Deteksi Kebocoran Kapal : Desain Dan Monitoring

Authors

  • Viki Ananta Sutrisno Univesitas PGRI Banyuwangi Author
  • Adi Mulyadi Universitas PGRI Banyuwangi Author
  • Muhammad Zainal Roisul Amin Universitas PGRI Banyuwangi Author

Keywords:

Ship Prototype Design, Water Level Sensor, ESP Module, DC Motor Pump, IoT

Abstract

This paper discusses the design and monitoring system of ship leakage. Ship leakage causes accidents at sea. Therefore, a prototype design and monitoring system are proposed. The design uses fiberglass and resin with dimensions of 60x15x13 cm, and monitoring uses the Internet of Things to turn on three automatic pumps alternately. The results show that monitoring pump 1 obtained an average water volume of 0.00131 m3, time 83.92 seconds, discharge 0.0000157 m3/second, current 0.44 A and power 2.2 W. Pump 2 obtained an average water volume of 0.00161 m3, time 139.08 seconds, discharge 0.0000116 m3/second, current 0.24 A and power 1.2 W. While pump 3 obtained an average water volume of 0.00126 m3, time 52.26 seconds, discharge 0.0000241 m3/second, current 0.68 A and power 3.4 W. The monitoring results have different average water volume, time, discharge, current and power.

Downloads

Download data is not yet available.

References

Putranto T, Purwanto DB. Analisa Gerakan Rolling Kapal Bocor Akibat Beban Gelombang Laut Pada Kapal Bulk Carrier. Teknik 2018;39:99–105. doi: https://doi.org/10.14710/teknik.v39n2.15783

Syafiul A. Kajian Damage Stability Pada Studi Kelayakan Desain Kapal Barge Penambang Timah Dengan Pendekatan Metode Numerik. Inovtek Polbeng 2019;9:334. doi: https://doi.org/10.35314/ip.v9i2.1123

Putranto T, Sulisetyono A. Analisa Numerik Gerakan Dan Kekuatan Kapal Akibat Beban Slamming Pada Kapal Perang Tipe Corvette. Kapal 2015;12. doi: https://doi.org/10.12777/kpl.12.3.158-164

Anggara PD, Adrianto D, Pranowo WS, Alam TM. Analisis Karakteristik Gelombang Laut Guna Mendukung Data Informasi Operasi Keamanan Laut di Wilayah Laut Natuna dan Laut Natuna Utara. J Chart Datum 2022;3:107–31. doi: https://doi.org/10.37875/chartdatum.v3i2.123

Marelsa NF, Oktaviandra Y. Analisis Karakteristik Gelombang Laut Menggunakan Software Windwave-12 (Studi Kasus : Kepulauan Mentawai). Oseana 2019;44:10–24. doi: https://doi.org/10.14203/oseana.2019.vol.44no.2.23

Pratama B. Analisis Penyebab Kebocoran Lambung Kapal Km. Dorolonda Saat Perjalanan Dari Makassar Menuju Surabaya. Politeknik Ilmu Pelayaran Semarang, 2022.

Budiyanto L. Pengaruh Salinitas Air Laut Terhadap Laju Korosi Pada Plat Lambung Kapal Bobot 1500 DWT. Din Bahari 2021;2:91–6. doi: https://doi.org/10.46484/db.v2i1.256

Royani A, Hanafi M, Julistiono H, Manaf A. Korosi Yang Dipengaruhi Mikrobiologi Dan Teknologi Pencegahannya Di Industri Minyak Dan Gas : Review. Metalurgi 2022;36:135. doi: https://doi.org/10.14203/metalurgi.v36i3.608

Prastuti OP. Pengaruh Komposisi Air Laut dan Pasir Laut Sebagai Sumber Energi Listrik. J Tek Kim Dan Lingkung 2017;1:35–41. https://doi.org/10.33795/jtkl.v1i1.13

Juniarti L, Ishak Jumarang M, Apriansyah. Analisis kondisi suhu dan salinitas perairan barat Sumatera menggunakan data Argo Float. Jurnal Phys Comm 2017;1:74. doi: https://doi.org/10.15294/physcomm.v1i1.9005

Musyarrofah, Irfa’i M, Khair A. Penurunan Salinitas (Kadar Klorida) Artifisial Dengan Proses Pertukaran Ion (Ion Exchange). J Kesehat Lingkung 2020;17:127–32.

Ngatmin, Purwanto H, Riwayati I. Analisis Laju Korosi Pada Plat Baja Lambung Kapal Dengan Umpan Anoda Korban Aluminium. J Ilm Momentum 2019;15:174–9. doi: https://doi.org/10.36499/jim.v15i2.3085

Gong C, Frangopol DM, Cheng M. Risk-based Decision-Making on Corrosion Delay for Ship Hull Tankers. Eng Struct 2020;212:110455. doi: https://doi.org/10.1016/j.engstruct.2020.110455

Zayed A, Garbatov Y, Guedes Soares C. Corrosion Degradation of Ship Hull Steel Plates Accounting for Local Environmental Conditions. Ocean Eng 2018;163:299–306. doi: https://doi.org/10.1016/j.oceaneng.2018.05.047

Adegboye MA, Fung WK, Karnik A. Recent Advances in Pipeline Monitoring and Oil Leakage Detection Technologies: Principles and Approaches. Sensors (Switzerland) 2019;19. doi: https://doi.org/10.3390/s19112548

Bolotina I, Borikov V, Ivanova V, Mertins K, Uchaikin S. Application of Phased Antenna Arrays for Pipeline Leak Detection. J Pet Sci Eng 2018;161:497–505. doi: https://doi.org/10.1016/j.petrol.2017.10.059

Irdriantono R, Anurogi A. Laporan Statistik Investigasi Kecelakaan Transportasi 2022 Semester 1. 2022.

Komite Nasional Keselamatan Transportasi. Investigasi Kecelakaan Transportasi 2022 Semester 2. 2023.

Syahputra A, Ramadhani A, Parini P. Prototipe Sistem Pendeteksi Kebocoran Air Dan Pengeluaran Air Secara Otomatis Pada Kapal Berbasisi Arduino Uno. J-Com (Journal Comput 2022;2:41–6. doi: https://doi.org/10.33330/j-com.v2i1.1581

Roviqoh V, Sudiro SA. Purwarupa, Pendeteksi Kebocoran Air Pada Sisi Kapal Ferry Menggunakan Sensor Hujan Berbasis Mikrokontroler Arduino Uno R3. Pros Semin SeNTIK 2021;5:221–8.

Ng KS, Chen PY, Tseng YC. A Design of Automatic Water Leak Detection Device. 2017 2nd Int. Conf. Opto-Electronic Inf. Process. ICOIP 2017, 2017, p. 70–3. doi: https://doi.org/10.1109/OPTIP.2017.8030701

Adedeji KB, Hamam Y, Abe BT, Abu-Mahfouz AM. Leakage Detection and Estimation Algorithm for Loss Reduction in Water Piping Networks. Water (Switzerland) 2017;9:1–21. doi: https://doi.org/10.3390/w9100773

Uddin MA, Hossain MM, Ahmed A, Sabuj HH, Seaum SY. Leakage Detection in Water Pipeline Using Micro-controller. 1st Int. Conf. Adv. Sci. Eng. Robot. Technol. 2019, ICASERT 2019, 2019. doi: https://doi.org/10.1109/ICASERT.2019.8934648

Widayaka PD, Jauhari L. Prototype of Water Pipe Leakage Detector Usig Flowmeter Sensor Based on Arduino Uno. BEST J Appl Electr Sci Technol 2020;2:34–8. doi: https://doi.org/10.36456/best.vol2.no1.2585

Hanson R. Water Leak Detection. Senior Project Electrical Engineering Department California Polytechnic State University San Lus Obispo, 2017.

P G, S A, R R, R V, V JS. Smart Pipeline Water Leakage Detection System. Int J Appl Eng Res 2017;12;16:5559–64.

Systems E. ESP32 Series Datasheet, 2021.

Astuti W, Fauzi A. Perancangan Deteksi Banjir Menggunakan Sensor Kapastif Mikrokontroler ATMega328p dan SMS Gateway. J Inform 2018;5:255–61. doi: https://doi.org/10.31311/ji.v5i2.3868

Iqtimal Z, Devi I, Syahrizal. Aplikasi Sistem Tenaga Surya Sebagai Sumber Tenaga Listrik Pompa Air. Kitektro J Online Tek Elektro 2018;3:1–8.

Saputra F. Kinerja Pompa Air DC Berdasarkan Intensitas Tenaga Surya. 2015.

Shofi AA, Sulistiyanto S, Bachrudin M. Rancang Bangun Water Pump Solar Energy Portable Perairan Sawah Untuk Membantu Petani Kabupaten Probolinggo. Med Tek J Tek Elektromedik Indones 2023;4:79–86. doi: https://doi.org/10.18196/mt.v4i2.16035

Prasetyo A, Ramadani R, R MY, Yasi RM. Implementasi Sistem Hidroponik Cerdas Pakan Ternak Jagung Menggunakan Esp32. Transm J Ilm Tek Elektro 2023;25:25–31. doi: https://doi.org/10.14710/transmisi.25.1.25-31

Yunianto AH, Kusuma HA, Perkapalan JT, Maritim U, Haji RA. Jurnal Sustainable : Jurnal Hasil Penelitian dan Industri Terapan Rancang Bangun Prototipe Kapal Katamaran Glass Bottom Ekowisata Laut 2023;12.

Utama FY, Wibowo H. Analisis Preventive Maintenance Terhadap Submersible Pump 100 DLC5 7, 5 T Dalam Instalasi Pengolahan Air Limbah. Inajet 2018;01:35–43.

Boy S, Putra A. Inovasi Submersible Pump sebagai Water Sampler untuk Penunjang Praktikum di Manajemen Sumber Daya Perairan. Indones J Lab 2023;1:78. doi: https://doi.org/10.22146/ijl.v1i2.85138

Sari DA, Soepryanto A, Burhanuddin S. Re-Design Electric Submersible Pump Pada PT Chevron Pacific Indonesia – Minas Pekanbaru. Barometer 2016;1:25–33. doi: https://doi.org/10.35261/barometer.v1i1.356

Suryadi D. Analisis Perancangan Design Submersible Pump Kawasan Timur Lapangan Ps Pada Sumur G. Universitas Islam Riau Pekanbaru, 2021.

Ratnawati, Tires BA, Yani A, Anoi YH. Pengaruh Variasi Debit Aliran Terhadap Performa Pompa Air Sentrifugal Single Stage Grundfos NS Basic 4-23M. J Juara 2022;2:2798–3315.

Wijayanto HL, Amiruddin A, Kadriadi K, Wirakusuma KW, Atmoko NT. Pengaruh Variasi Daya Pompa pada System Pendinginan TEG terhadap Tegangan yang Dihasilkan TEG. J Ilm Univ Batanghari Jambi 2022;22:477. doi: https://doi.org/10.33087/jiubj.v22i1.2017

Pasisarha DS. Perbaikan Faktor Daya Listrik Mesin Pompa Air Pada Fasilitas Kampus Polines. Orbith Maj Ilm Pengemb dan Sosial., 2020;16:45–9. doi: http://dx.doi.org/10.32497/orbith.v16i1.2068

Zaputra TP, Gusnita N. Analisis Pengaruh Jumlah Lilitan dan Kecepatan Putar Terhadap Efisiensi Pada Permanent Magnet Synchronus Generator 18 Slot 16 Pole. JTEV (Jurnal Tek Elektro Dan Vokasional) 2022;8:411. doi: https://doi.org/10.24036/jtev.v8i2.117875

Agussationo Y, Sepdian, Armi PA. Variasi Diameter Lilitan Kawat Motor Induksi. J Elektron List Dan Teknol Inf Terap 2020;2:39–45. doi: https://doi.org/10.37338/elti.v2i2.185

Fahrudin A. Perancangan Pompa Air Sentrifugal, Tinggi Kenaikan (H 14), Kapasitas (Q) 40 M3 /Jam Dengan Putaran 1450 Rpm. Tedc 2020;14:145–52. Available online : https://ejournal.poltektedc.ac.id/index.php/tedc/article/view/369

Bustamante AL, Patricio MA, Molina JM. Thinger.io: An open source Platform for Deploying Data Fusion Applications in IoT Environments. Sensors (Switzerland) 2019;19. doi: https://doi.org/10.3390/s19051044

Cover

Downloads

Published

2024-07-16

How to Cite

Deteksi Kebocoran Kapal : Desain Dan Monitoring. (2024). Journal Electric Field, 1(1), 10-20. https://jurnal.sekawansiji.org/index.php/jef/article/view/16