Pengurangan Distorsi Harmonik Total Pada Sistem Fotovoltaik Tenaga Surya Dengan Metode Kecerdasan Buatan: Tinjauan Epistemologi
Keywords:
Artificial Intelligence, Total Harmonic Distortion, Photovoltaic System, Epistemological ImplicationsAbstract
Total harmonic distortion (THD) in photovoltaic (PV) systems is a significant challenge that can degrade power quality and disrupt grid stability. This research proposes an innovative approach utilizing artificial neural networks (ANNs) to detect and mitigate THD in real-time. The uniqueness of this study lies in the application of transfer learning to train AI models with limited data, thereby reducing computational time and costs. Additionally, this research adopts a physics-based approach to enhance the interpretability of AI models, allowing us to understand the mechanisms behind model predictions. The results of this study are expected to contribute to the development of more efficient and reliable PV systems, as well as open up new avenues for renewable energy utilization. This research also has intriguing epistemological implications, as it demonstrates the potential of AI to assist us in understanding complex systems like energy systems in novel and profound ways.
Downloads
References
S. Mondal, S. P. Biswas, M. R. Islam, and S. M. Muyeen, “A Five-Level Switched-Capacitor Based Transformerless Inverter with Boosting Capability for Grid-Tied PV Applications,” IEEE Access, vol. 11, no. February, pp. 12426–12443, 2023, doi: https://doi.org/10.1109/ACCESS.2023.3241927.
M. R. Al Haqq, I. Chlissodin, and A. A. Soebroto, “Maximum Power Point Tracking (MPPT) pada Panel Surya dalam Kondisi Berbayang Sebagian dengan Particle Swarm Optimization (PSO),” Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 8, pp. 3524–3537, 2021, [Online]. Available: http://j-197ptiik.ub.ac.id
K. Narasimman, V. Gopalan, A. K. Bakthavatsalam, P. V Elumalai, M. Iqbal Shajahan, and J. Joe Michael, “Modelling and real time performance evaluation of a 5 MW grid-connected solar photovoltaic plant using different artificial neural networks,” Energy Convers. Manag., vol. 279, p. 116767, 2023, doi: https://doi.org/10.1016/j.enconman.2023.116767 .
N. V. Kurdkandi et al., “A New Six-Level Transformer-Less Grid-Connected Solar Photovoltaic Inverter with Less Leakage Current,” IEEE Access, vol. 10, no. Cmv, pp. 63736–63753, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3182240.
N. I. Nahin, S. P. Biswas, S. Mondal, M. R. Islam, and S. M. Muyeen, “A Modified PWM Strategy with an Improved ANN Based MPPT Algorithm for Solar PV Fed NPC Inverter Driven Induction Motor Drives,” IEEE Access, vol. 11, no. June, pp. 70960–70976, 2023, doi: https://doi.org/10.1109/ACCESS.2023.3291339.
T. A. H. Alghamdi, O. T. E. Abdusalam, F. Anayi, and M. Packianather, “An artificial neural network based harmonic distortions estimator for grid- connected power converter-based applications,” Ain Shams Eng. J., vol. 14, no. 4, p. 101916, 2023, doi: https://doi.org/10.1016/j.asej.2022.101916.
S. R. Khasim, C. Dhanamjayulu, S. Padmanaban, J. B. Holm-Nielsen, and M. Mitolo, “A Novel Asymmetrical 21-Level Inverter for Solar PV Energy System with Reduced Switch Count,” IEEE Access, vol. 9, pp. 11761–11775, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3051039.
L. Trinchini and R. Baggio, “Digital Sustainability: Ethics, Epistemology, Complexity and Modelling,” First Monday, 2023, doi: https://doi.org/10.5210/fm.v28i9.12934.
J. H. Choi, U. M. Choi, and F. Blaabjerg, “Hybrid Pulse Width Modulation for Improving Reliability of DC-Link Capacitors of NPC Inverter in Photovoltaic Systems,” IEEE Access, vol. 12, no. February, pp. 18752–18763, 2024, doi: https://doi.org/10.1109/ACCESS.2024.3359231.
V. Anand, V. Singh, J. Sathik, and D. Almakhles, “Single-stage Five-level Common Ground Transformerless Inverter with Extendable Structure for Centralized Photovoltaics,” CSEE J. Power Energy Syst., vol. 9, no. 1, pp. 37–49, 2023, doi: https://doi.org/10.17775/CSEEJPES.2022.02700.
Q. Paletta et al., “Advances in solar forecasting: Computer vision with deep learning,” Adv. Appl. Energy, vol. 11, p. 100150, 2023, doi: https://doi.org/10.1016/j.adapen.2023.100150.
N. F. Ibrahim et al., “Operation of Grid-Connected PV System with ANN-Based MPPT and an Optimized LCL Filter Using GRG Algorithm for Enhanced Power Quality,” IEEE Access, vol. 11, no. 226 September, pp. 106859–106876, 2023, doi: https://doi.org/10.1109/ACCESS.2023.3317980.
F. Chakir, A. El Magri, R. Lajouad, M. Kissaoui, M. Chakir, and O. Bouattan, “Enhanced Standalone Photovoltaic System with Novel Multi-Level Inverter and Nonlinear Control for Improved THD and Converter Efficiency,” IFAC-PapersOnLine, vol. 58, no. 13, pp. 478–483, 2024, doi: https://doi.org/10.1016/j.ifacol.2024.07.528.
R. A. Fahim et al., “Improved Switching Technique to Mitigate THD and Power Loss of NPC Inverters,” IEEE Trans. Appl. Supercond., vol. 34, no. 8, pp. 1–5, 2024, doi: https://doi.org/10.1109/TASC.2024.3420303.
B. Bhattacharjee, P. K. Sadhu, A. Ganguly, A. K. Naskar, and S. P. Bihari, “Photovoltaic integrated optimized energy storage drives for electric vehicles,” J. Energy Storage, vol. 98, p. 113098, 2024, doi: https://doi.org/10.1016/j.est.2024.113098.
R. Boopathi and V. Indragandhi, “Experimental Investigations on Photovoltaic Interface Neutral Point Clamped Multilevel Inverter-Based Shunt Active Power Filter to Enhance Grid Power Quality,” IEEE Access, vol. 12, no. June, pp. 74482–74498, 2024, doi: https://doi.org/10.1109/ACCESS.2024.3405533.
G. Anusha, K. Arora, H. Sharma, S. P. Thota, G. P. Joshi, and W. Cho, “Control strategies of 15-level modified cascaded H-bridge MLI with solar PV and energy storage system,” Energy Reports, vol. 12, pp. 2–26, 2024, doi: https://doi.org/10.1016/j.egyr.2024.06.003.
A. Jaiswal, S. sachan, and S. Deb, “A novel technique to detect and mitigate harmonic during islanding in grid connected PV system,” Energy Reports, vol. 12, pp. 3940–3956, 2024, doi: https://doi.org/10.1016/j.egyr.2024.09.064.
Y. Y. Ghadi, M. S. Iqbal, M. Adnan, K. Amjad, I. Ahmad, and U. Farooq, “An Improved Artificial Neural Network-Based Approach for Total Harmonic Distortion Reduction in Cascaded H-Bridge Multilevel Inverters,” IEEE Access, vol. 11, pp. 127348–127363, 2023, doi: https://doi.org/10.1109/ACCESS.2023.3332245.
A. Sabry, Z. M. Mohammed, F. H. Nordin, N. H. Nik Ali, and A. S. Al-Ogaili, “Single-Phase Grid-Tied Transformerless Inverter of Zero Leakage Current for PV System,” IEEE Access, vol. 8, pp. 4361–4371, 2020, doi: https://doi.org/10.1109/ACCESS.2019.2963284.
B. Bai, S. Xiong, X. Ma, and X. Liao, “Assessment of floating solar photovoltaic potential in China,” Renew. Energy, vol. 220, p. 119572, 2024, doi: https://doi.org/10.1016/j.renene.2023.119572.
S. K. Yadav, B. Singh, and N. Mishra, “Real-time harmonics optimization of seven level converter for megawatt scale solar PV-utility integration,” e-Prime - Adv. Electr. Eng. Electron. Energy, vol. 9, p. 100705, 2024, doi: https://doi.org/10.1016/j.prime.2024.100705.
M. Sravani and P. V. S. Sobhan, “Performance evaluation of solar PV integrated with custom power device under various load conditions,” e-Prime - Adv. Electr. Eng. Electron. Energy, vol. 10, p. 100843,2024, doi: https://doi.org/10.1016/j.prime.2024.100843.
B. Maroua, Z. Laid, H. Benbouhenni, M. Fateh, N. Debdouche, and I. Colak, “Robust type 2 fuzzy logic 262 control microgrid-connected photovoltaic system with battery energy storage through multi-functional voltage source inverter using direct power control,” Energy Reports, vol. 11, pp. 3117–3134, 2024, doi: https://doi.org/10.1016/j.egyr.2024.02.047.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ahmad Baihaqi Mas, Afandi Arif Nur, Patmanthara Syaad (Author)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.